Wien (fwf) - Mechanisch gewonnene Holzfasern unterscheiden sich von chemisch isolierten in einer Reihe fundamentaler
Eigenschaften. Dies ist das jüngste Ergebnis eines vom Wissenschaftsfonds FWF unterstützten Projekts
der Universität für Bodenkultur, Wien. Die Arbeit liefert wichtige Erkenntnisse über die strukturellen
Veränderungen in Holzfasern bei Nässe und Dehnung. Die vorliegenden Ergebnisse sind sowohl für die
Strukturanalyse von Holz als auch für die Erforschung innovativer Einsatzmöglichkeiten dieses klassischen
Werkstoffes wichtig.
Holz ist eines der häufigsten und vielseitigsten Materialien der belebten Natur. Harmonisch vereint es hohe
Festigkeit mit Flexibilität. Wie diese scheinbar widersprüchlichen Eigenschaften vereint werden, damit
befasst sich die Holzforschung. Für die Analyse zahlreicher Eigenschaften wurden bisher einzelne Holzfasern
mittels chemischer Verfahren aus dem Holz gelöst obwohl man schon seit langem vermutete, dass dadurch Veränderungen
am Holz verursacht werden, die in der Folge die wissenschaftlichen Ergebnisse in Frage stellen. WissenschafterInnen
an der Universität für Bodenkultur in Wien entwickelten daher eine alternative Isolationsmethode für
Holzfasern. In einem mechanischen Verfahren werden sie mit kleinen Pinzetten aus dem Holz herausgeschält.
"Damit ist es uns gelungen, Holzfasern zu isolieren, deren Zellwände nicht durch chemische Substanzen
verändert oder zerstört sind", erläutert Prof. Stefanie Stanzl-Tschegg vom Institut für
Physik und Materialwissenschaften den Vorteil der Methode. "Vergleichen wir nun diese Holzfasern mit jenen,
die traditionell chemisch isoliert wurden, dann können wir nicht nur die Schwächen der einzelnen Methoden
besser verstehen, sondern auch sehr viel Neues über Struktur und Eigenschaften von Holz erfahren."
Nass & Trocken
Eine wichtige Eigenschaft, über die Prof. Stanzl-Tschegg und ihre MitarbeiterInnen dabei neueste Erkenntnisse
gewinnen konnten, war das Trocknungsverhalten von Holz. Hier hatten frühere Arbeiten mit zuvor chemisch isolierten
Holzfasern gezeigt, dass sich diese als Konsequenz des Trocknens sehr stark gegen den Uhrzeigersinn verdrehen.
Verantwortlich für dieses Phänomen sind spiralenförmig gewundene Strukturen in den Zellwänden
von Holzfasern. Diese werden von so genannten Zellulosefibrillen geformt, die hier parallel zueinander eingelagert
sind und dem Material Festigkeit verleihen. In den Untersuchungen von Prof. Stanzl-Tschegg und ihrem Team zeigte
sich jedoch, dass sie sich beim Trocknen wesentlich weniger verdrehen, wenn sie zuvor mechanisch isoliert wurden.
Den Grund hierfür fanden die ForscherInnen mittels spezieller mikroskopischer Analysen in einer Matrix, bestehend
aus den komplexen Molekülen Lignin und Hemizellulose. Diese Matrix ist bei mechanisch isolierten Holzfasern
anders als bei chemisch isolierten noch intakt und umgibt die einzelnen Zellulosefibrillen. Damit ähnelt die
Matrix einem Korsett, das der Holzfaser auch im nassen Zustand Stabilität verleiht und der beim Trocknen einsetzenden
Verkrümmung entgegenwirkt.
Zug & Druck
Dieses Ergebnis fügt sich nahtlos in eine Reihe von grundlegenden Erkenntnissen über den Naturstoff
Holz, die durch die Teams um Prof. Stanzl-Tschegg gewonnen werden konnten. So gelang es auch, eine andere funktionale
Besonderheit der Holzfaser zu entdecken: Ein molekularer Mechanismus innerhalb der Holzfasern funktioniert wie
ein Klettverschlusssystem. Werden Zellulosefibrillen durch Zug oder Druck verdreht, so lösen sich ihre Verbindungen
mit der Matrix aus Lignin und Hemizellulosen und erlauben so die Verformbarkeit von Holz. Sobald die äußeren
Kräfte hingegen nachlassen, rasten die Verbindungen in einer neuen Position wieder ein und halten damit die
Festigkeit des Materials weiterhin aufrecht. Eine Eigenschaft, die bisher eher von metallartigen Materialien bekannt
war.
Gerade das Entdecken solcher bisher unbekannter Eigenschaften des traditionell bewährten Naturstoffes Holz,
erlaubt seinen gezielten und sicheren Einsatz für immer neue Anwendungen. Damit trägt dieses vom Wissenschaftsfonds
FWF unterstützte Materialforschungs-Projekt auch zur Zukunftssicherung eines bedeutenden Wirtschaftszweiges
im waldreichen Österreich bei. |