TUM-Forscher klären Mechanismus eines Eiweißblockers aus Bakterien auf
München (idw) - Wenn Buschbohnen krankhaft-braune Flecken bekommen, stecken Pseudomonas-Bakterien
dahinter. Bei ihrem Angriff auf die Pflanze sondern die schädlichen Mikroben einen Stoff ab, der die Abwehr
der Pflanze durcheinander bringt - und sich in Zukunft als segensreich für den Menschen erweisen könnte.
Denn die Substanz hemmt auch das Wachstum von Krebszellen. Ein Team von Forschern, dem auch Wissenschaftler der
Technischen Universität München (TUM) angehören, hat jetzt die Struktur und den neuartigen Wirkmechanismus
des Bakterienstoffs aufgeklärt. (Veröffentlichung in Nature 452, 755-758; 10. April 2008)
Bakterien haben es nicht leicht, Pflanzen zu befallen, denn deren wächserne Oberfläche und Zellwände
stellen für die Mikroben schwer zu überwindende Hürden dar. Gelingt der Durchbruch trotzdem, beginnt
die Pflanze in vielen Fällen, sich aktiv zu wehren: Sie produziert ein ganzes Arsenal spezieller Eiweiße,
die die biochemische Abwehr gegen das Pathogen in Gang setzen. Damit diese Abwehr funktioniert, müssen Proteine,
die die Abwehr unterdrücken, abgebaut werden. Dies übernehmen die zellulären Entsorgungsstationen,
die so genannten Proteasomen. Sie zerlegen zum Abbau bestimmte Eiweiße wieder in ihre Bausteine.
Doch die biochemischen Verteidigungslinien der Pflanzen sind nicht unüberwindbar: Bakterien der Art Pseudomonas
syringae pathovar syringae - kurz Pss - sondern einen kleinen, aber höchst effektiven Eiweißring namens
Syringolin A ab. Der stiftet in den Blattzellen der unfreiwilligen Pss-Wirtin, der Buschbohne, Verwirrung und führt
so den Angriff der Pss-Bakterien zum Erfolg.
Was dieser Eiweißring in den Blättern der Buschbohne genau bewirkt, haben Wissenschaftler der TUM zusammen
mit Kooperationspartnern der Max-Planck-Institute in Martinsried und Dortmund sowie Kollegen aus der Schweiz, Großbritannien
und den USA herausgefunden: Syringolin A blockiert in den Blättern die Proteasomen der Buschbohne, indem es
sich in einer ungewöhnlich festen chemischen Bindung an sie kettet. Das führt zu einem wahren Proteinstau
in den Buschbohnenblättern, und in der Folge gerät die pflanzliche Abwehr dadurch aus den Fugen.
Außerdem klärten die Forscher die Struktur des Syringolins auf - und kamen so auf die Spur einer ganzen
Eiweißfamilie: Sie fanden eine Reihe ähnlicher Verbindungen in anderen Mikroorganismen, die ähnlich
wie Syringolin A funktionieren.
Diese Erkenntnisse sind nicht nur bedeutsam, um etwa Schutzmittel für die Buschbohne zu entwickeln. Syringolin
A & Co. könnten sich in Zukunft auch für die Krebsbekämpfung eignen. Denn auch menschliche Tumorzellen
produzieren sehr viele Proteine und sind daher von gut funktionierenden Proteasomen abhängig. Ein synthetischer
Proteasom- Hemmstoff ist bereits seit einigen Jahren als Therapeutikum erhältlich. Möglicherweise könnte
er Unterstützung durch den Naturstoff Syringolin A erhalten, der in ersten Experimenten mit kultivierten Krebszellen
bereits wachstumshemmende Wirkung zeigte.
Der Biochemiker Groll sieht sogar noch weiteres Potenzial in Syringolin A & Co: Fänden sich geeignete
Vertreter ihrer Klasse, wäre deren Einsatz auch gegen bakterielle Krankheitserreger denkbar, die Mensch oder
Pflanze plagen. Die Grundlage für die Entdeckung und Erforschung dieser neuartigen Naturstoffe ist jedenfalls
gelegt. |