Was in der Netzhaut am Anfang des Sehrvorgangs geschieht.
Villingen (idw) - Am Anfang des Sehvorgangs steht die Wechselwirkung des Lichts mit dem Protein Rhodopsin.
Dieses enthält den eigentlichen Lichtsensor, der angeregt wird, seine Form zu verändern und so den Rest
des Vorgangs anzustossen. Forscher des Paul Scherrer Instituts haben zusammen mit Kollegen aus Grossbritannien
und den USA die Struktur des Rhodopsinmoleküls in dem kurzlebigen angeregten Zustand bestimmt und so ein genaues
Bild der ersten Stufe des Sehvorgangs geliefert. Über Ihre Ergebnisse berichten die Forschenden in der Online-Ausgabe
des Journals Nature.
Beim Sehen löst Licht, das ins Auge fällt, einen mehrstufigen chemischen Vorgang aus. An dessen Ende
steht ein Nervenimpuls, der den Lichteindruck in Richtung Gehirn weiterleitet. Am Anfang steht die Wechselwirkung
des Lichts mit dem Protein Rhodopsin. Dieses enthält den eigentlichen Lichtsensor - der von dem einfallenden
Licht dazu angeregt wird, seine Form zu verändern und so den Vorgang anzustossen.
Forschern des Paul Scherrer Instituts ist es nun gelungen, zusammen mit Kollegen aus Grossbritannien und den USA,
die genaue Struktur des Rhodopsinmoleküls in diesem kurzlebigen angeregten Zustand zu bestimmen und so ein
genaues Bild der ersten Stufe des Sehvorgangs zu liefern. Dieses Ergebnis dürfte zum besseren Verständnis
der erblichen Augenkrankheit Retinitis Pigmentosa beitragen und möglicherweise Wege für deren Behandlung
oder Verlangsamung aufzeigen. Gleichzeitig liefert das Ergebnis die Basis für das Verständnis vieler
weiterer Vorgänge im Organismus, die auf einem ähnlichen Mechanismus beruhen - etwa die Wahrnehmung von
Gerüchen oder die Steuerung von Abläufen über Hormone. Über Ihre Ergebnisse berichten die Forschenden
in der neuesten Ausgabe des Journals Nature.
Sehen ist ein hochkomplexer Vorgang - eine Vielzahl von chemischen Reaktionen muss ablaufen bevor das Gesehene
unser Bewusstsein erreicht. Ganz am Anfang dieses Vorgangs trifft das Licht auf die Sehsinneszellen in der Netzhaut
des Auges - die Zapfen oder Stäbchen. In den Zellmembranen der Stäbchen, die für das Sehen bei schlechten
Lichtverhältnissen zuständig sind, sitzen Rhodopsin-Moleküle - die eigentlichen Lichtsensoren. Sie
bestehen aus jeweils insgesamt sieben stabförmigen Molekülteilen, die von aussen ins Innere der Zelle
hineinreichen. Fällt Licht von aussen auf das Rhodopsin, verändert sich die Anordnung der stabförmigen
Teile so, dass im Inneren der Zelle ein so genanntes G-Proteinmolekül Platz dazwischen findet. Das Andocken
des G-Proteins stösst eine Kaskade von Vorgängen an, an deren Ende ein Nervenimpuls ausgelöst wird.
Das eigentlich lichtempfindliche Pigment ist das Retinal - eine Form von Vitamin A - das als kleines geknicktes
Molekül zwischen den sieben Teilen des Rhodopsins steckt. Sobald Licht darauf fällt, streckt es sich
und drückt Teile des Rhodopsins auseinander, so dass Platz für das G-Protein entsteht. Nun ist es Forschern
des Paul Scherrer Instituts gelungen, die Struktur des Rhodopsins im aktivierten Zustand zu bestimmen - also in
der durch das Licht veränderten Form mit dem gestreckten Retinal. Dieser Zustand ist eigentlich sehr kurzlebig,
da das Rhodopsin ja möglichst schnell in den Zustand zurückkehren muss, in dem es für Licht empfänglich
ist. Die PSI-Forscher haben aber einen Weg gefunden, das Molekül geringfügig so zu verändern, dass
es die aktivierte Form länger beibehält und konnten damit seine Struktur bestimmen. Die Struktur der
inaktiven Form des Rhodopsins, wie sie ohne Licht auftritt, war schon vorher bekannt. Mit der Kenntnis beider Strukturen
kann man jetzt genau nachvollziehen wie der Sehvorgang im Auge auf molekularer Ebene beginnt.
Für die Untersuchungen wurden die entsprechenden Moleküle in grosser Menge erzeugt und in einer Kristallstruktur
regelmässig angeordnet. Dabei ist Rhodopsin eines der sehr wenigen Membranproteine dieser Klasse, die sich
kristallisieren lassen. Die Kristalle wurden mit Synchrotronlicht durchleuchtet und aus der Ablenkung des Lichts
auf dem Weg durch den Kristall können die Forschenden auf die Struktur der untersuchten Moleküle schliessen.
Die Messungen wurden an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts und an zwei weiteren
ähnlichen Anlagen durchgeführt.
Universelle Mechanismen des Lebens verstehen
"Die Untersuchung des Rhodopsins hilft uns eine grosse Klasse von ähnlichen Molekülen zu
verstehen - es gibt mehr als 800 davon im Menschen." Erklärt Jörg Standfuss, Leiter des Forschungsprojekts
"Die meisten reagieren nicht auf Licht, sondern auf andere Reize und erfüllen so die unterschiedlichsten
Aufgaben: Im Geruchssinn reagieren sie auf Substanzen aus der Atemluft. Oder sie dienen als Rezeptoren für
Hormone innerhalb des Körpers - wie etwa die Beta-Rezeptoren, die am Herzen für Steuerung des Blutdrucks
mitverantwortlich sind". Diese dienen als Andockstelle für die als Betablocker bekannten Mittel gegen
Bluthochdruck. Insgesamt sind diese Moleküle von grossem Interesse für die pharmazeutische Forschung,
weil man über sie Vorgänge im Körper sehr gezielt steuern oder blockieren kann. So wechselwirken
etwa Medikamente, die bei Herzrhythmusstörungen, Migräne oder Allergien eingesetzt werden, mit diesen
Rezeptoren. Der genaue Aufbau der Beta-Rezeptoren war Thema einer weiteren Arbeit, die Forscher des Paul Scherrer
Instituts mit Kollegen in Cambridge vor kurzem in Nature veröffentlicht haben.
Optimierte Therapien für Augenkrankheit
"Unsere Erfahrung mit der Strukturuntersuchung an veränderten Rhodopsin- Molekülen wenden
wir derzeit auch zur Erforschung einer verbreiteten Augenkrankheit an - der Retinitis Pigmentosa", erklärt
Standfuss. Bei dieser ererbten Krankheit ist oftmals das Rhodopsin in den Zapfen des Auges verändert So wird
es nicht wie im gesunden Auge regelmässig vollständig erneuert - es verbleiben stets Teile der "alten"
Moleküle, die allmählich die Sehzellen vergiften. Das führt anfangs zu Nachtblindheit und über
längere Zeit zu einem deutlich eingeschränkten Gesichtsfeld. Standfuss dazu: "In Zukunft werden
wir genau bestimmen können, in welcher Weise das Rhodopsin bei der Erkrankung verändert ist, und dann
auch untersuchen, wie kleine Moleküle, die als Medikamente die Erkrankung aufhalten, in das Rhodopsin eingebaut
werden." Mit diesem Wissen könnte man dann am Computer die Struktur der Medikamente gezielt optimieren.
Internationale Forschung
Jörg Standfuss und der Leiter des Labors für Biomolekulare Forschung am Paul Scherrer Institut,
Prof. Gebhard Schertler haben das Projekt am MRC Laboratory of Molecular Biology in Cambridge (England) begonnen
und nach ihrem Umzug ans PSI zu Ende geführt. Sie haben dabei eng mit Kollegen der Brandeis University, USA
zusammengearbeitet.
Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt
sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind
Festkörperforschung und Materialwissenschaften, Elementarteilchenphysik, Biologie und Medizin, Energie- und
Umweltforschung. Mit 1400 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut
der Schweiz. |