Wien (tu) - An der Technischen Universität (TU) Wien ist es gelungen, durch ausgeklügelte Atom-Chips
quantenphysikalisch verknüpfte Atom-Zwillinge zu erzeugen. Bisher waren ähnliche Experimente nur mit
Lichtteilchen möglich. Objekte, die voneinander weit entfernt sind, sich aber trotzdem nicht getrennt voneinander
verstehen und beschreiben lassen – sie gehören zu den erstaunlichsten Merkwürdigkeiten der Quantenphysik.
Photonenpaare, wie sie in speziellen Kristallen erzeugt werden sind ein prominentes Beispiel (down conversion Kristall
– optische parametrische Oszillatoren). Durch sie kann man Quantenzustände teleportieren oder Daten mittels
Quantenkryptografie abhörsicher übertragen. In Zukunft werden solche Experimente nicht nur mit Lichtteilchen
möglich sein: An der TU Wien wurde nun mithilfe von ultrakalten Bose-Einstein-Kondensaten eine Methode entwickelt,
korrelierte Atompaare zu erzeugen. Die Ergebnisse des Experimentes wurden im Fachjournal „Nature Physics“ veröffentlicht.
Getrennt und doch vereint
Schon Einstein wollte nicht so recht daran glauben, dass voneinander getrennte Teilchen quantenphysikalisch verbunden
sein können und nannte solche Phänomene „spukhafte Fernwirkung“. Doch seither wurden die überraschenden
Schlussfolgerungen der Quantentheorie immer wieder bestätigt: Quantenteilchen können – auch wenn sie
weit voneinander entfernt sind – noch immer zusammengehören und sich gewisse physikalische Eigenschaften „teilen“.
„Das bedeutet nicht, dass man durch Manipulation am einen Teilchen auch das andere verändern könnte,
als wären sie durch einen unsichtbaren Faden miteinander verbunden“, erklärt Prof. Jörg Schmiedmayer
vom Atominstitut der TU Wien. „Aber trotzdem muss man beide Teilchen als ein Quantensystem gemeinsam betrachten
– und das gibt uns Möglichkeiten für spannende Experimente.“
Jörg Schmiedmayers Forschungsgruppe führte die Arbeiten an der TU Wien durch, unterstützt von theoretischen
Berechnungen von Ulrich Hohenester an der Karl-Franzens-Universität Graz.
Energie- und Impulserhaltung
Um die quantenphysikalisch korrelierten Atome zu erzeugen, stellte man zunächst ein Bose-Einstein-Kondensat
her. Dieser exotische Materiezustand stellt sich bei extrem tiefen Temperaturen ein – einige Milliardstel Grad
über dem absoluten Nullpunkt. In einem Bose-Einstein-Kondensat befinden sich alle Atome im niedrigst-möglichen
Energiezustand. „Der Schlüssel zum Erfolg liegt in unseren Atom-Chips“ erklärt Thorsten Schumm (TU Wien).
Mit diesen maßgeschneiderten Chip-Strukturen können Atome ganz gezielt manipuliert und gesteuert werden.
So ist es möglich, den Atomen des ultrakalten Bose-Einstein-Kondensates gezielt ein Quantum Schwingungsenergie
zuzuführen. Wenn die Atome dann wieder in den Zustand niedrigster Energie zurückkehren, muss das Kondensat
die überschüssige Energie wieder loswerden. „Durch ein ausgeklügeltes Design unseres Atom-Chips
hat das Bose-Einstein-Kondensat nur eine einzige Möglichkeit, Energie abzugeben: Die Aussendung von Atom-Paaren.
Alle anderen Varianten sind quantenphysikalisch verboten“, erklärt Robert Bücker (TU Wien). Nach dem
Gesetz der Impulserhaltung bewegen sich die beiden ausgesandten Atome dann in genau entgegengesetzte Richtungen
auseinander. Der Prozess ist analog zu dem Effekt, der in speziellen nicht-linearen Kristallen bei der Erzeugung
von Lichtteilchen-Paaren auftritt (optischer parametrischer Oszillator), aber nun funktioniert er nicht nur für
Licht sondern auch für Materieteilchen.
Grundlagenforschung in Wien
Die ausgesandten Atom-Zwillinge kann man sich aber nicht einfach wie klassische Partikel vorstellen, wie sie etwa
bei einer Explosion in alle Richtungen davonfliegen. Sie sind quantenphysikalische Kopien voneinander und unterscheiden
sich nur durch die entgegengesetzte Bewegungsrichtung. Sie bilden quasi ein gemeinsames Quanten-Objekt – ein Atom
kann nicht mathematisch beschrieben werden, ohne gleichzeitig auch das andere zu beschreiben. „Diese Atome werden
wir in Zukunft für spannende Versuche nützen“, ist Jörg Schmiedmayer zuversichtlich. „Ein unglaublich
aufregendes Forschungsgebiet tut sich hier auf. Welche neuen Erkenntnisse oder Anwendungsmöglichkeiten sich
daraus ergeben werden, ist heute noch gar nicht absehbar. Es ist gut vorstellbar, dass durch diese korrelierten
Atomstrahlen neue Quanten-Messverfahren ermöglicht werden, mit einer Präzision, die die Möglichkeiten
der klassischen Physik bei weitem übersteigt.“
Originalpublikation: R. Bücker et al., Twin-atom beams, Nature Physics, Advance Online Publication 01 May
2011. |