Wie Fische auf Wellen: Elektronen surfen   

erstellt am
22. 09. 11

RUB-Forscher in Nature: Transport einzelner Elektronen geglückt Auf dem Weg zum komplexen Quantenbit und dem Computer von morgen
Bochum (rub) - Ein entscheidender Schritt zu erheblich leistungsfähigeren Computern ist Physikern der RUB zusammen mit Forschern aus Grenoble und Tokyo gelungen: Aus dem Schwarm an Elektronen in elektrischen Leitern und Halbleitern konnten sie mit Hilfe einer Schallwelle ein einzelnes Elektron herauspicken und transportieren. Wie ein Fisch auf einer Welle "surft" das Elektron von einem Quantenpunkt zum nächsten. Ein einzelnes Elektron auf diese Weise zu manipulieren erlaubt es in Zukunft, statt klassischer Bits ("0"- und "1"-Zustände) auch die wesentlich komplexeren Quantenbits zu kombinieren. Über ihre Ergebnisse berichten die Forscher in der internationalen Top-Zeitschrift "Nature".

Halbleiterphysik: Der Traum eines Anglers
Elektronen sind in elektrischen Leitern (Metallen) und Halbleitern wie Silizium (Si) oder Galliumarsenid (GaAs) frei beweglich wie Fische im Wasser. Allerdings können sie nicht von selbst "schwimmen", sondern bewegen sich durch elektrische Spannungen (Felder). In einem Metall kommen sie als gewaltiger Fischschwarm vor, der das gesamte Wasservolumen ausfüllt. In Halbleitern sind diese Schwärme weniger dicht, die Abstände zwischen den Fischen sind viel größer. Der Schwarm lässt sich durch äußere elektrische Spannungen zu einer dünnen Schicht nahe der Oberfläche zusammenziehen. Dieser "Traum eines Anglers" geht für Halbleiterphysiker jetzt in Erfüllung, möglich macht das die neue Methode, die das internationale Forscherteam entwickelt hat: Die Elektronen"fische" liegen alle in einer Ebene und sind von der Oberfläche aus gut einzeln zugreifbar.

Einen aus der Masse fischen
"Allerdings gibt es keine ‚dicken' Fische, denn alle Elektronen sind genau gleich groß und sogar prinzipiell identisch", erläutert Prof. Dr. Andreas Wieck, Physiker an der RUB. Das Verfahren der Forscher aus Deutschland, Frankreich und Japan ermöglicht es dennoch, aus dem Schwarm einzelne Elektronen "herauszufischen", über eine bestimmte Strecke zu bewegen und sie dann am Zielpunkt wieder nachzuweisen. Die Strecke betrug im Experiment vier Mikrometer (?m) - das ist zwanzigmal länger als ein hochintegrierter Transistor. Der gezielte Transport einzelner Elektronen trotz der Masse des Schwarms gelingt, indem zuerst zwischen den Spitzen von vier Elektroden ein kleiner Schwarm zu einem nulldimensionalen Objekt, einem "Quantenpunkt", eingepfercht wird. Dann senden die Wissenschaftler durch eine ineinandergreifende Doppelkamm-Elektrode, an die sie Radiofrequenz anlegen, eine Welle durch den Halbleiterkristall - der ist vergleichbar mit dem Wasser für die Fische. Das Verfahren funktioniert umgekehrt wie der Spannungsblitz in einem "Piezo"-Feuerzeug: Dort wird ein Kristall deformiert, um eine Spannung zu erzeugen; hier deformieren die Forscher den Kristall durch das Anlegen der Spannung, was bei regelmäßiger Wiederholung zu einer Welle führt.

Der Fisch surft auf der Welle
Diese Welle fegt in einer vorgefertigten Probe beispielsweise von links nach rechts mit Schallgeschwindigkeit durch den Mini-Schwarm im Quantenpunkt - im Kristall mit drei Kilometern pro Sekunde. In ihrer Höhe wird sie so eingestellt, dass sie nur genau einen "Fisch" daraus mitnimmt, der dann auf der Welle im eindimensionalen Kanal "surft". 4?m rechts davon entfernt befindet sich ein weiterer Quantenpunkt, in dem der "Fisch" ankommt. Durch die Wiederholung von Wellenpaketen und Messungen konnten die Forscher eine gute Statistik aufbauen, um die Sicherheit des Verfahrens zu messen. Ein einzelnes Elektron mit der Welle herauszupicken, funktionierte in den ersten Experimenten mit einer Wahrscheinlichkeit von 96 Prozent; es wiederzufinden mit 92 Prozent.

Der Clou: Die Ausrichtung der Fische Die Elektronen"fische" sind zwar nicht unterscheidbar, können aber ausgerichtet werden, weil sie wie kleine Kreisel eine Drehrichtung ("Spin") haben. Das ist so, als ob man einen Fisch zum Beispiel mit "Kopf nach oben" ausrichtet, ihn von der Welle mitreißen lässt und ihn im Ziel-Quantenpunkt auch mit "Kopf nach oben" wiederfindet. Dadurch, dass die Überlebenszeit dieser Spin-Orientierung länger ist als die Surf-Zeit auf der Welle, geschieht das mit hoher Sicherheit. Auch die Quantenbits der Zukunft bestehen aus solchen spin-polarisierten Elektronen. Ihre Forschungsergebnisse erzielten die Wissenschaftler mit Proben, die am Lehrstuhl für Angewandte Festkörperphysik der Ruhr-Universität Bochum durch so genannte Molekularstrahl-Epitaxie hergestellt, in Tokyo strukturiert und schließlich in Grenoble vermessen wurden. Nicht nur die Proben, sondern auch die Konzepte kommen aus Bochum: Prof. Wieck hat bereits vor 21 Jahren die Vision eines Elektronen-Richtkopplers publiziert, den die Forschergruppe jetzt realisiert hat. Dazu erscheint in Kürze eine weitere Veröffentlichung.


Titelaufnahme
Sylvain Hermelin, Shintaro Takada, Michihisa Yamamoto, Seigo Tarucha, Andreas D. Wieck, Laurent Saminadayar, Christopher Bäuerle and Tristan Meunier: Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. DOI: 10.1038/nature10416
     
zurück