Emanuela Bianchi untersucht Partikel, die sich automatisch zu kristallartigen Strukturen zusammenfügen
- ein neues Hoffnungsgebiet für die Materialforschung.
Wien (tu) - Sie sind winzig, sie sind vielseitig, sie könnten in der Materialwissenschaft bald
eine besonders wichtige Rolle spielen: "Patchy Colloids" sind mikroskopisch kleine Partikel, die aneinander
andocken und sich ganz von selbst zu komplizierten Strukturen formieren können. Nun zeichnet sich eine völlig
neue Methode ab, solche Partikel herzustellen. Emanuela Bianchi wurde dafür heuer mit einem Elise Richter
Stipendium ausgezeichnet.
Mikroskopisch kleine Partikel docken aneinander an
Welche faszinierenden Möglichkeiten die Patchy Colloids bieten könnten, wird schon seit Jahren
theoretisch untersucht. "Man kann sich diese Partikel wie winzige Kügelchen vorstellen, die an ihrer
Oberfläche eine bestimmte Anzahl klebriger Andockstellen haben", erklärt Emanuela Bianchi. Je nach
Art und der Anzahl der Andockstellen (den sogenannten"Patches"), durch die sich die Partikel miteinander
verbinden können und abhängig von äußeren Bedingungen können sich die Teilchen zu einer
geordneten Struktur zusammenfügen - ähnlich wie einzelne Atome, die gemeinsam einen Kristall bilden.
Besonders interessant sind solche Strukturen für die Optik: "Wenn es gelingt, aus Kolloiden diamantartige
Strukturen zu erzeugen, dann könnte man sogenannte photonische Kristalle herstellen", sagt Emanuela Bianchi.
Mit solchen photonischen Kristallen könnte man Lichtwellen ganz gezielt manipulieren.
Das Problem der Herstellung
Die Synthese solcher Patchy Colloids ist allerdings schwierig. Das Ausgangsmaterial dafür sind normalerweise
gewöhnliche Kolloide: Partikel (in der Größe von wenigen Nano- bis Mikrometern), die in einem mikroskopischen
Trägermedium fein verteilt sind, etwa die winzigen Fetttröpfchen, die Milch undurchsichtig weiß
erscheinen lassen, oder die Pigmentpartikel in farbiger Tinte. Um aus kleinen Partikeln Patchy Colloids zu machen,
müssen sie an ihrer Oberfläche mit Andockstellen versehen werden. "Für diesen Prozess gibt
es unterschiedliche Ideen, doch sie alle haben gemeinsam, dass sie sehr aufwändig sind und nur eine recht
geringe Anzahl von Patchy Colloids hervorbringen", sagt Emanuela Bianchi.
Sternförmige Moleküle
Doch wenn sich Kolloide durch Selbstorganisation zu großen kristallartigen Strukturen zusammenfügen
können - warum sollte man dann das Prinzip der Selbstorganisation nicht auch benutzen können, um die
winzigen Kolloide selbst zu erzeugen? Gemeinsam mit Barbara Capone von der Fakultät für Physik der Universität
Wien forscht Bianchi nun an sogenannten Stern-Polymeren. Diese Strukturen bestehen aus vielen einzelnen Molekülketten,
die sternförmig von der Mitte nach außen ragen. Wenn man Molekülketten mit passenden chemischen
Eigenschaften wählt, dann fügen sie sich ganz von selbst zu Bündeln mit klebrigen Endpunkten zusammen.
So werden sie zu Patchy Colloids, ohne dass man ihre Oberfläche von außen speziell manipulieren müsste.
Wie sich diese Polymerketten aneinanderkleben und wie die sternförmigen Strukturen zu diesen speziellen Kolloidteilchen
werden, wird nun in Computersimulationen untersucht.
Diese neue Klasse von Patchy Colloids weist zwei spezielle Charakteristika auf: Im Gegensatz zu traditionellen
Patchy Colloids sind die Teilchen nunmehr weich - sie können also in einem erheblichen Ausmaß überlappen
- und die Patches sind in ihren Positionen nicht mehr fixiert - sie können also aus ihrer Gleichgewichtslage
ausgelenkt werden. "Die Konsequenzen dieser neuen Eigenschaften könnten bei der Bildung kristalliner
Strukturen sehr wichtig sein", sagt Emanuela Bianchi. Das Gesamtproblem muss also auf unterschiedlichen Längenskalen
betrachtet werden - von der molekularen Ebene bis hin zu makroskopischen Abmessungen. Das ist zwar wissenschaftlich
höchst kompliziert, doch die Aussicht auf eine ganze Klasse neuartiger Materialien lässt die große
Mühe heute jedenfalls lohnenswert erscheinen.
Elise Richter Stipendium für Emanuela Bianchi
Emanuela Bianchi wird ihre Forschung in den nächsten Jahren, finanziert durch das Elise Richter Stipendium
des österreichischen Wissenschaftsfonds FWF, in der Arbeitsgruppe "Soft Matter Theory" des Instituts
für Theoretische Physik der TU Wien fortsetzen. Mit diesem Stipendium möchte der FWF junge Wissenschaftlerinnen
an eine internationale akademische Karriere heranführen.
|