Mit einem einzigen Atom kann man an der TU Wien das Licht zwischen Glasfaserkabeln hin und
her schalten. So lassen sich Quantenphänomene für Informations- und Kommunikationstechnik nutzen.
Wien (tu) - Glasfaserkabel werden zum Quantenlabor: Möglichst klein möchte man optische Schalter
bauen, um Licht manipulieren zu können. An der TU Wien gelang das mit einem einzigen Atom. Ganz alltägliche
Glasfasern, wie sie heute für die Internet-Datenübertragung verwendet werden, können dadurch nun
über winzige Quantensysteme miteinander verschaltet werden.
Licht in der Flasche
Laserlicht wird von Prof. Arno Rauschenbeutel und seinem Team an der TU Wien in sogenannte „Flaschen-Resonatoren“
abgefüllt – bauchig geformte Glasobjekte, an deren Oberfläche das Licht im Kreis läuft. Bringt man
einen solchen Resonator in die Nähe einer lichtleitenden Glasfaser, dann koppeln die beiden Systeme aneinander
und Licht kann von der Glasfaser in den Flaschen-Resonator wechseln.
„Wenn der Umfang des Resonators genau zur Wellenlänge des Lichts passt, kann man sogar erreichen, dass das
gesamte Licht vom Glasfaserkabel in den Resonator übertritt – und von dort kann man es dann wiederum in eine
zweite Glasfaser weiterleiten“, sagt Arno Rauschenbeutel.
Rubidiumatom als Schalter
Dieses Gesamtsystem aus Eingangsglasfaser, Flaschenresonator und Ausgangsglasfaser ist allerdings höchst empfindlich:
„Wenn man nur ein einziges Rubidiumatom mit dem Resonator in Kontakt bringt, kann sich das Verhalten dramatisch
ändern“, erklärt Rauschenbeutel. Wenn das Licht genau auf das Atom abgestimmt ist, lässt sich sogar
erreichen, dass das Licht gar nicht erst in den Flaschenresonator eindringt und in der ursprünglichen Glasfaser
weiterwandert anstatt in die Ausgangsglasfaser überzuwechseln. Das Atom wirkt also als Schalter, der festlegt,
in welcher Glasfaser das Licht geleitet wird.
Beide Möglichkeiten gleichzeitig: Der Quanten-Lichtschalter
In einem nächsten Schritt wollen die Physiker ausnutzen, dass das Rubidiumatom sich in unterschiedlichen Quantenzuständen
befinden kann, wobei nur einer dieser Zustände mit dem Resonator wechselwirkt. Befindet sich das Atom im anderen
Zustand verhält sich das Licht so, als wäre das Atom gar nicht da. Je nach Zustand des Atoms wird das
Licht also entweder in das eine oder in das andere Glasfaserkabel geschickt. Nun kann man sich eine bemerkenswerten
Eigenschaften der Quantenphysik zu Nutze machen: „In der Quantenphysik ist es möglich, dass Objekte verschiedene
Zustände gleichzeitig annehmen“, sagt Arno Rauschenbeutel. Man kann also das Atom so präparieren, dass
es sich gleichzeitig in beiden Schaltzuständen befindet. Dementsprechend liegen in jedem der beiden Glasfaserkabel
auch die Zustände „Licht“ und „kein Licht“ gleichzeitig vor.
Was für den klassischen Lichtschalter zu Hause völlig undenkbar wäre, ist für einen „Quanten-Lichtschalter“
also kein Problem. „Spannend ist es nun, zu überprüfen, ob solche Überlagerungen auch mir stärkeren
Lichtpulsen möglich sind – irgendwo müssen wir hier auf einen Übergang zwischen Quantenphysik und
klassischer Physik stoßen“, meint Rauschenbeutel.
Für Quanteninformation und Quantenkommunikation ist der optische Schalter ein sehr mächtiges neues Werkzeug.
„Wir planen, ganz gezielt Quanten-Verschränkungen zwischen Licht und Materie herstellen“, sagt Arno Rauschenbeutel,
„und das nicht mit einem exotischen Gerät, das es nur im Labor gibt, sondern mit ganz normalen Glasfasern,
wie sie schon heute für die Kommunikation verwendet werden.“
|