Wien (tu) - Von der Gelenksflüssigkeit im Knie bis zum Schmiermittel im Motor: Mit einem neuartigen Sensor,
der in einem Gemeinschaftsprojekt zwischen der TU Wien, der JKU Linz und der Donau Universität Krems entwickelt
wurde, kann man Flüssigkeiten mit akustischen Wellen untersuchen.
Honig fließt anders als Wasser. Die entscheidende Größe, die man benötigt, um das Fließverhalten
von Flüssigkeiten anzugeben, ist die Viskosität – ein Maß für ihre Zähigkeit. Nun wurde
eine ganz neue Art von Sensoren entwickelt, die mit Hilfe von Schallwellen die Viskosität von Flüssigkeiten
messen. So lassen sich wichtige Aussagen über die Flüssigkeit ableiten, zum Beispiel ob ein Schmiermittel
in einer Maschine noch funktioniert oder schon gewechselt werden muss. Wichtig ist das für die Qualitätskontrolle
in der Industrie, aber auch für medizinische Untersuchungen.
Scherwellen und Druckwellen
Normalerweise misst man Viskosität, indem man eine dünne Platte durch eine Flüssigkeit bewegt –
und zwar entlang der Plattenebene, so als würde man mit der flachen Hand eine Wasseroberfläche entlangstreichen.
Je nach Viskosität bewegen sich unterschiedlich weit von der Platte entfernte Flüssigkeitsschichten unterschiedlich
schnell mit der Platte mit. Diesen Viskositätskoeffizienten bezeichnet man als Scherviskosität. Allerdings
haben Flüssigkeiten auch noch einen zweiten Viskositätskoeffizienten, der in Sensoranwendungen bisher
seltsamerweise kaum Beachtung fand: Die Druckviskosität.
Die Druckviskosität misst man, indem man eine Platte vor und zurück bewegt – als würde man mit der
flachen Hand auf die Wasseroberfläche schlagen. Dabei entstehen akustische Wellen, die sich in der Flüssigkeit
ausbreiten. Je höher die Viskosität, umso stärker werden die akustischen Wellen abgedämpft.
Im Zuge des Forschungsprojekts, das vom FWF unterstützt wurde, untersuchte man zunächst das Konzept der
Druckwellen-Viskositätsmessung mit Hilfe von Rechenmodellen und Computersimulationen, dann wurden daraus verschiedene
Sensorkonzepte und optimale Rechenalgorithmen zur Messdatenauswertung entwickelt.
Neue Methode mit großen Vorteilen
„Bisher hat man Viskosität meist mit großen, klobigen Instrumenten gemessen, die kompliziert zu bedienen
und außerdem auch recht teuer sind“, sagt Franz Keplinger. Zwar gibt es mittlerweile auch miniaturisierte
Varianten, doch auch sie haben entscheidende Nachteile. „Man kann mikroakustische Strukturen in einer Flüssigkeit
schwingen lassen – doch dabei regt man bloß Scherwellen an, die oft nur wenige hundert Nanometer tief in
die Flüssigkeit eindringen“, erklärt Franz Keplinger. Solche Messungen sind daher extrem empfindlich
auf Verschmutzungen am Sensor – die Wellen dringen möglicherweise gar nicht in die zu analysierende Flüssigkeit
ein sondern messen bloß die Schmutzablagerung. Außerdem werden solche Sensoren bei sehr hohen Frequenzen
im Megahertzbereich betrieben, bei denen sich die Viskosität ganz anders verhalten kann als im Niederfrequenzbereich,
an dem man eigentlich interessiert ist.
Die typische Eindringtiefe von Druckwellen hingegen beträgt mehrere Meter. Ein Druckwellen-Sensor kann also
die Flüssigkeitseigenschaften über eine längere Strecke hinweg untersuchen. Die Abschwächung
der Welle auf ihrem Weg durch das Fluid kann sehr genau gemessen werden, zum Beispiel indem man in einem Fluidresonator
stehende Wellen untersucht.
Anwendungsideen für die Druckwellensensoren gibt es viele: Man könnte sie direkt in Maschinen einbauen,
um Flüssigkeitseigenschaften in Echtzeit zu messen – etwa in der Nahrungsmittelindustrie. Aber auch für
die Medizin ist die Druckwellen-Viskositätsmessung äußerst interessant: Das Team forscht nun an
der Frage, wie man mit miniaturisierten Messgeräten winzigste Mengen von Gelenksflüssigkeit untersuchen
kann.
|