Wien (tu) - Nicht nur am großen Teilchenbeschleuniger, sondern auch am Labortisch macht man sich heute
auf die Suche nach neuen Teilchensorten: Die Gravitations-Resonanz-Methode, entwickelt an der TU Wien, erweitert
den Gültigkeitsbereich der Newton’schen Gravitationstheorie und schränkt Parameterbereiche für hypothetische
Teilchen hunderttausendfach stärker ein als bisher.
Alle Teilchen, die wir heute kennen, machen nur fünf Prozent der Masse und Energie im Universum aus. Der große
Rest – die „Dunkle Energie“ und die „Dunkle Materie“ – bleibt bis heute mysteriös. Ein Team der TU Wien führte
gemeinsam mit dem ILL (Institut Laue-Langevin, Grenoble) hochsensitive Untersuchungen von Gravitations-Effekten
auf winzigen Abständen durch. Damit lässt sich nun der Bereich, in dem man neue Teilchensorten oder zusätzliche
Naturkräfte vermuten könnte, hunderttausend mal stärker einschränken als bisher.
Unentdeckte Teilchensorten?
Die Dunkle Materie kann man zwar nicht sehen, sie wirkt aber durch ihre Gravitationskraft auf die bekannte
Materie ein, etwa auf die Rotation von Galaxien. Die dunkle Energie hingegen ist dafür verantwortlich, dass
sich das Universum immer schneller ausdehnt.
Dunkle Energie kann man mit einer zusätzlichen physikalischen Größe beschreiben, mit Albert Einsteins
Kosmologischer Konstante. Eine Alternative dazu sind sogenannte Quintessenz-Theorien: „Vielleicht ist der leere
Raum gar nicht leer, sondern erfüllt von einem bisher unbekannten Feld, vergleichbar mit dem Higgs-Feld“,
sagt Prof. Hartmut Abele vom Atominstitut der TU Wien. Benannt wurden diese Theorien nach der von Aristoteles postulierten
Quintessenz, einem hypothetischen fünften Element neben den vier antiken Urstoffen.
Andersartige Teilchensorten und zusätzlichen Naturkräfte müssten sich allerdings auch in Experimenten
auf der Erde nachweisen lassen. Thomas Jenke und Hartmut Abele von der TU Wien entwickelten ein extrem sensitives
Instrument, mit dem an der Neutronenquelle des ILL in Grenoble die Gravitationskraft vermessen werden konnte. Neutronen
sind dafür optimal geeignet: Sie sind elektrisch neutral und kaum polarisierbar. Auf sie kann im Experiment
bloß die Gravitation wirken – und allenfalls auch neue, bisher unbekannte Zusatzkräfte. Umfangreiche
theoretische Berechnungen zum Verhalten der Neutronen wurden von Larisa Chizhova, Prof. Stefan Rotter und Prof.
Joachim Burgdörfer vom Institut für theoretische Physik der TU Wien durchgeführt. U. Schmidt von
der Universität Heidelberg und T. Lauer von der TU München steuerten zur Polarisationsanalyse bei.
Kräfte zwischen zwei Platten
Die Neutronen werden abgekühlt und zwischen zwei parallelen Platten hindurchgeschickt. Nach den Gesetzen der
Quantenphysik kann sich das Neutron dabei nur in ganz bestimmten Zuständen mit ganz bestimmten Energien befinden,
die von der Stärke der Kraft abhängt, die von der Gravitation auf das Teilchen ausgeübt wird. Indem
man die untere Platte vibrieren lässt, kann man die Neutronen zwischen den Zuständen hin und her wechseln
lassen. So lassen sich die Abstände der Energieniveaus vermessen.
„Das Experiment ist ein wichtiger Schritt zur Modellierung gravitativer Wechselwirkungen bei sehr kleinen Distanzen.
Die Neutronen am ILL und die Messinstrumente aus Wien bilden zusammen das beste Werkzeug, um nach winzigen Abweichungen
von der Newton‘schen Gravitationstheorie zu suchen, die von manchen Theorien vorhergesagt werden“, sagt Peter Geltenbort
vom ILL Grenoble.
Wie leicht eine solche Abweichung aufzufinden ist, hängt von verschiedenen Parametern ab – zum Beispiel von
der Stärke der Kopplung eines hypothetischen neuartigen Feldes an die bekannte Materie. Bestimmte Wertebereiche
für diese Parameter gelten längst als ausgeschlossen: Gäbe es eine „Quintessenz“ mit solchen Kopplungsstärken,
hätte man sie bereits in anderen Präzisions-Experimenten finden müssen. Doch noch immer blieb ein
großer „erlaubter“ Parameterbereich, in dem sich neue physikalische Phänomene verstecken könnten.
Hunderttausend mal besser als bisher
Mit der Neutronen-Methode lassen sich nun allerdings Theorien in diesem Bereich testen: „Bisher konnten wir bei
unseren Messungen keine Abweichungen zum bekannten Newton’schen Gravitationsgesetz finden“, sagt Hartmut Abele.
„Dadurch können wir nun einen weiten Bereich von Parametern ausschließen.“ Die Messergebnisse legen
nun ein Limit für den Kopplungsparameter fest, das hunderttausendmal unterhalb der Grenzen liegt, die sich
aus anderen Messmethoden ergaben.
Auch wenn sich auf diese Weise bestimmte hypothetische Teilchen ausschließen lassen ist es freilich noch
immer möglich, dass sich unterhalb dieser verbesserten Nachweisgrenze neuartige Physik versteckt. Die Gravitations-Resonanz-Methode
soll daher nun noch weiterentwickelt werden. Einige Größenordnungen an Genauigkeits-Verbesserung scheinen
noch möglich. Wenn sich auch dann keine Hinweise auf Abweichungen von den bekannten Kräften ergeben,
könnte Albert Einstein schließlich noch einen späten Sieg davontragen: Seine Kosmologische Konstante
erscheint dann immer plausibler.
|