Neue ökonomische Wirkstoffsynthesen durch Kombination von organischer und theoretischer
Chemie
Wien (universität) - Stickstoffhaltige Verbindungen sind von großem Wert für die pharmazeutische
und agrochemische Industrie sowie die Materialwissenschaft. Einem interdisziplinären Team um Nuno Maulide
und Leticia González von der Fakultät für Chemie ist es gelungen, verschiedene Produktklassen
dieser so genannten Heterozyklen durch modulare Kombination einfacher Bausteine – wie einzelne Legosteine – selektiv
herzustellen. Die neue Methode erzeugt keine unerwünschten Nebenprodukte und benötigt nur einen simplen,
billigen Katalysator. Die Studie erscheint aktuell in Nature Communications.
Zyklische organische Stickstoff-Verbindungen, so genannte Heterozyklen, sind eine große Verbindungsklasse
mit außergewöhnlich diversen Anwendungsgebieten. Fast jedes zweite Medikament, das für die klinische
Anwendung zugelassen wird, enthält dieses grundlegende Strukturmotiv. "Sogar die Basen in unserer DNS,
dem genetischen Code aller Lebewesen, gehören zu den stickstoffhaltigen Heterozyklen. Sie spielen also eine
wichtige Rolle in der organischen Chemie", erklärt der organische Chemiker Nuno Maulide, Leiter der Studie.
Seine Arbeitsgruppe hat in Zusammenarbeit mit der theoretischen Chemikerin Leticia González und ihrem Team
eine allgemeine und besonders einfache Methode entwickelt, um eine große Anzahl verschiedener Heterozyklen
zu synthetisieren.
"Wir haben nach einem Weg gesucht, wie wir zwei oder drei Reaktanden modular zusammenfügen können.
Man kann sich das so vorstellen, als ob sich einzelne Menschen händehaltend in geometrischen Formen aufstellen
– in unserem Fall als Hexagon", sagt Nuno Maulide. Reaktionen, die so ablaufen, nennt man Cycloadditionen:
Sie sind in der Lage, in einfachen Schritten zu einer dramatischen Steigerung der molekularen Komplexität
zu führen, was die entstehenden Produkte so wertvoll macht. “Aber es gibt beim Design solcher Reaktionen auch
viele Probleme”, gibt Nuno Maulide zu bedenken. So wie man auch bei einer ringförmigen Menschenkette verschiedene
Resultate haben kann, abhängig davon, ob die Menschen (A, B, C) alle in eine Richtung oder teilweise nach
innen oder nach außen blicken. Wenn man diese Analogie auf Moleküle erweitert, gibt es natürlich
Millionen Moleküle A, Millionen Moleküle B und Millionen Moleküle C, die alle miteinander reagieren
können. "Es bedarf einiges an Entwicklung und Design, unliebsame Kombinationen wie A-A-B, A-A-C, B-C-C,
und so weiter zu eliminieren. Wenn die Chemie doch bloß einfach wäre!", sagt der portugiesische
Chemiker mit einem Lächeln.
Die Theorie gibt die Antwort
Um den Einfluss verschiedener Faktoren auf den Reaktionsablauf besser zu verstehen, wurden die Reaktionsverläufe
mit Methoden der Quantenchemie simuliert. Dabei wird versucht, mittels Computersimulationen wertvolle Informationen
über den Verlauf der Reaktionen zu gewinnen, mit deren Hilfe die Arbeit im Labor in eine bestimmte Richtung
gelenkt werden kann. Das Geheimnis des untersuchten Prozesses liegt in der sequentiellen Aktivierung der einzelnen
Reaktanden, die jeweils eine hochenergetische Zwischenstufe generieren. "Es sind genau diese Zwischenstufen,
die man nicht sehen, am Computer aber rechnen kann", sagt Leticia González, seit 2011 Theoretische
Chemikerin an der Universität Wien. "Und genau die Zwischenstufen sind von entscheidender Bedeutung.
Jede einzelne bestimmt in weiterer Folgen den restlichen Prozess. Es ist fast so, als würden die Reaktionspartner
vom Vorgängerprozess einzeln in der richtigen Reihenfolge aufgerufen werden", erklärt die aus Madrid
stammende Chemikerin.
Der Bonus der Selektivität
Mit den Informationen aus der Theoretischen Chemie war es den PraktikerInnen aus dem Team um Nuno Maulide möglich,
den Katalysezyklus bei der Synthese einer bestimmten Klasse von Heterozyklen, den Isochinolinen, zu perfektionieren.
"Überraschenderweise war es möglich, durch nur kleine, gezielte Veränderungen der Reaktionsbedingungen
von ein und demselben Reaktanden zu unterschiedlichen Produkten zu kommen. Mit den Bausteine A, B und C konnten
wir statt der Sequenz A-B-C auch beliebig die Sequenz A-B-B herstellen. Das ermöglichte uns, auch so genannte
Pyrimidine herzustellen – einfach durch die Wahl anderer Rahmenbedingungen", sagt Maulide. Dieses Konzept
der "Chemoselektivität" ist das Markenzeichen hocheffizienter und praktikabler chemischer Reaktionen.
Die Reaktion, die Maulide und González entdeckt haben, benötigt keine Schwermetallkatalysatoren, erzeugt
keine unerwünschten Nebenprodukte (Stichwort “Atomökonomie”, das Konzept nach dem alle Atome der Ausgangsmaterialien
auch im Produkt enthalten sind) und ist ein weiterer Schritt zu einer umweltfreundlichen Synthesechemie. Durch
die Kombination der experimentellen mit der theoretischen Chemie ist uns ein immenser Vorteil entstanden, der diese
Entdeckung auszeichnet", freuen sich González und Maulide.
Publikation in "Nature communications"
"Metal-free intermolecular formal cycloadditions enable an orthogonal access to nitrogen heterocycles":
Lan-Gui Xie, Supaporn Niyomchon, Antonio J. Mota, Leticia Gonzalez and Nuno Maulide. Nature Communications 2016.
DOI: 10.1038/NCOMMS10914
|