Scharfe Metallspitzen verwendet man, um Elektronen gezielt in eine Richtung zu senden. Ein
Quanten-Effekt liefert nun eine neue Methode, die Elektronen-Emission extrem genau zu kontrollieren.
Wien (tu) - Wenn man Elektronen präzise kontrollieren will, dann lässt man sie aus feinen Metallspitzen
austreten – so macht man das etwa in einem Elektronenmikroskop. Seit Kurzem werden solche Metallspitzen auch als
hochpräzise Elektronenquellen zur Erzeugung von Röntgenstrahlung verwendet. Ein Team der TU Wien entwickelte
nun gemeinsam mit einer Forschungsgruppe aus Deutschland (FAU Erlangen-Nürnberg) eine Methode, diese Elektronenemission
mit Hilfe zweier Laserpulse viel genauer zu steuern als bisher. Damit wird es jetzt möglich, den Fluss der
Elektronen auf extrem kurzen Zeitskalen ein- und auszuschalten.
Nur die Spitze zählt
„Die Grundidee ist ähnlich wie beim Blitzableiter“, erklärt Prof. Christoph Lemell vom Institut für
Theoretische Physik der TU Wien. „Das elektrische Feld rund um eine Nadel ist immer genau an der Spitze am größten.
Daher schlägt der Blitz in die Spitze des Blitzableiters ein, und aus demselben Grund verlassen Elektronen
die Nadel genau an der Spitze.“
Mit modernen Methoden der Nanotechnologie kann man heute extrem feine Nadeln herstellen, ihre Spitze hat eine Ausdehnung
von wenigen Nanometern. Man weiß also sehr genau, an welcher Stelle die Elektronen das Metall verlassen.
Wichtig ist es zusätzlich nun aber auch, eine genaue Kontrolle darüber zu haben, ob und zu welchem Zeitpunkt
die einzelnen Elektronen aus der Metallspitze austreten.
Genau das wird nun mit einer neuen Technik möglich: „Man beschießt die Metallspitze mit zwei verschiedenen
Laserpulsen“, erklärt Florian Libisch (TU Wien). Die Farben dieser Laser wählt man so, dass die Lichtteilchen
des einen Lasers genau doppelt so viel Energie haben wie die Lichtteilchen des anderen Lasers. Wichtig ist außerdem,
dass die Lichtwellen der beiden Laser perfekt im gleichen Takt schwingen.
Das Team von der TU Wien konnte aufgrund von Computersimulationen vorhersagen, dass sich die zeitliche Verzögerung
eines der beiden Pulse als „Schalter“ für die Elektronenemission verwenden lässt. Diese Vorhersage wurde
nun von der Forschungsgruppe von Prof. Peter Hommelhoff von der FAU Erlangen-Nürnberg experimentell bestätigt.
Aufgrund dieser Ergebnisse konnte auch der detaillierte Prozessablauf erklärt werden.
Elektronen, die Lichtteilchen absorbieren
Schießt man Laserpulse auf die Metallspitze kann das elektrische Feld des Lasers Elektronen aus dem Metall
reißen – das war bereits bekannt. Neu ist allerdings, dass es durch die Kombination von zwei verschiedenen
Lasern eine Möglichkeit gibt, die Emission der Elektronen auf wenige Femtosekunden genau zu kontrollieren.
Es gibt verschiedene Möglichkeiten, wie ein Elektron ausreichend viel Energie bekommen kann, um die Nadelspitze
zu verlassen: Beispielsweise kann das Elektron entweder zwei Lichtteilchen des Lasers mit höherer Energie
absorbieren oder aber vier Lichtteilchen des niederenergetischen Laserpulses. Beides führt zum selben Ergebnis.
„So wie ein Teilchen im Doppelspaltexperiment, das sich auf zwei Pfaden gleichzeitig bewegt, kann ein Elektron
auch hier zwei verschiedene Wege gleichzeitig beschreiten“, erklärt Prof. Joachim Burgdörfer (TU Wien).
„Die Natur legt sich nicht fest, welchen Weg das Elektron nimmt – beide Möglichkeiten finden gleichzeitig
statt und überlagern einander.“
Durch präzise Kontrolle der beiden Laser kann man nun einstellen, ob sich diese beiden Quanten-Möglichkeiten
gegenseitig verstärken – dann kommt es zu einer erhöhten Emission von Elektronen – oder ob sie einander
stattdessen auslöschen sollen, sodass praktisch überhaupt keine Elektronen ausgesandt werden. So kann
man einfach und effektiv die Elektronen-Emission kontrollieren.
Das ist nicht nur eine ganz neue Methode, mit der man nun wichtige Experimente mit energiereichen Elektronen durchführen
kann, die neue Technik soll in Zukunft auch eine sehr präzise Steuerung von Röntgenstrahlen ermöglichen:
„Es wird bereits an innovativen Röntgen-Quellen gearbeitet, die Arrays aus feinen Nano-Spitzen als Elektronenquelle
verwenden“, erklärt Lemell. „Mit unserer neuen Methode könnte man diese Nano-Spitzen genau richtig ansteuern,
um kohärente Röntgenstrahlung zu erzeugen.“
|