Wien (fwf) - Wer wirksame Moleküle im Labor nachbauen kann, öffnet die Apotheke der Natur für
Medikamente der Zukunft. Mit der Prüfung neu entwickelter Synthese-Prozesse und Katalysatoren ist es in einem
Projekt des Wissenschaftsfonds FWF gelungen, den vielversprechenden Naturstoff Brefeldin A schneller und in größerer
Menge zu erzeugen.
Penicillin wurde noch durch Zufall entdeckt. Viele kennen die Geschichte des urlaubenden Alexander Fleming, der
nach seiner Rückkehr in das Londoner Labor verschimmelte Nährböden vorfand und Bakterienkulturen,
die nicht gediehen. Weitere Versuche offenbarten die tödliche Wirkung des Schimmels auf grampositive Bakterien
bei guter Verträglichkeit für den Menschen. Erst Jahre später wurde Penicillin von Kollegen als
lebensrettendes Antibiotikum eingesetzt. Heute wird die Apotheke der Natur sehr systematisch durchforstet und die
Wirkung von Naturstoffen getestet. Dafür braucht es deutlich mehr als einen Tropfen Pflanzensaft oder Pilzsekret.
Michael Fuchs, Universitätsassistent an der Universität Graz, forschte mit einem Erwin-Schrödinger-Stipendium
des Wissenschaftsfonds FWF 18 Monate lang am deutschen Max-Planck-Institut für Kohlenforschung.
Die Proteinfalle aus dem Pilz
Auch Brefeldin A stammt aus einem unscheinbaren Schimmelpilz (Penicillium brefeldianum). Der Naturstoff stoppt
die Protein-Transportketten in eukaryotischen Zellen. In weiterer Folge zerfällt die zelluläre Proteinfabrik
(Golgi-Apparat) und die Zelle stirbt. „Es konnte gezeigt werden, dass Brefeldin A das unkontrollierte Wachstum
einer Vielzahl von menschlichen Krebszell-Linien hemmt. Der erste Versuch, den Wirkstoff in die klinische Anwendung
zu bringen, schlug jedoch fehl, weil das Molekül sehr schnell abgebaut und ausgeschieden wird“, erklärt
Michael Fuchs die Ausgangslage. Der potente Naturstoff kann durch Fermentation des Pilzes gewonnen oder im Labor
Schritt für Schritt nachgebaut werden. Bisher beschrittene Synthesewege brachten jedoch nie mehr als 15 Milligramm
Ausbeute hervor.
Neuer Prozess bringt schneller mehr Naturstoff
Der Fokus dieses Grundlagenforschungsprojekts lag daher auf einer schnellen Synthese größerer Mengen
und der experimentellen Prüfung neu entwickelter Synthese-Methoden und Katalysatoren anhand des komplexen
Moleküls. Ein „Knackpunkt“ war der gezielte Nachbau einer trans-konfigurierten Doppelbindung. Für die
Wirkung eines Moleküls kommt es nämlich auf die genaue Ausrichtung der chemischen Gruppen im Raum an.
Man unterscheidet eine „cis“ und eine „trans“-Form von Molekülen. Im besten Fall ist eine Form unwirksam,
im schlimmsten Fall schädlich.
Beim Nachbau im Labor wurden in 16 Reaktionsschritten neue Bestandteile an das wachsende Molekül chemisch
angefügt. Die Reaktionen werden mit Katalysatoren gestartet und mit Substraten befeuert. „Im vorletzten Schritt
konnten wir ein unvorhergesehenes Nebenprodukt nachweisen, das die Ausbeute des Endproduktes schmälert“, beschreibt
Michael Fuchs. Dennoch erbrachte die neue Methode circa 500 Milligramm Brefeldin A, also das 30-fache der bisherigen
Menge.
Der Chemiker konnte durch weitere Experimente den Prozessablauf an der gewünschten Stelle anhalten und das
Zwischenprodukt genauer untersuchen. Nun kann der Katalysator weiter verbessert werden, um die Reaktion vollständig
ablaufen zu lassen. Wer die Bauanleitung genau kennt, kann im nächsten Schritt Derivate mit kleinen chemischen
Modifikationen bauen. Naturstoffderivate sind ein etablierter Weg, um Mankos – wie etwa die (zu) rasche Abbaubarkeit
– zu beheben. Aktuell arbeitet Michael Fuchs in Graz mit ökologisch unbedenklichen, biokatalytischen Verfahren
am Aufbau von Naturstoffen.
Zur Person
Michael Fuchs schloss Chemie an der Karl-Franzens-Universität Graz mit einer Doktorarbeit zur Enzym-unterstützten
Synthese komplexer organischer Moleküle 2012 ab. Die folgenden zwei Jahre arbeitete er im Zuge eines Erwin-Schrödinger-Stipendiums
des FWF am deutschen Max-Planck-Institut für Kohlenforschung an der trans-selektiven Hydrierung von Alkinen.
Aktuell ist Fuchs wissenschaftlicher Mitarbeiter in der Forschergruppe um Wolfgang Kroutil am Institut für
Chemie der Uni Graz.
Publikationen
Fuchs, M.; Fürstner, A.: trans-Hydrogenation: Application to a Concise
and Scalable Synthesis of Brefeldin A, in: Angewandte Chemie, Int. Ed. 2015, 54, 3978-3982; doi: 10.1002/anie.201411618
Leutzsch, M.; Wolf, L. M.; Gupta, P.; Fuchs, M.; Thiel, W.; Farès, C.; Fürstner, A.: Formation of Ruthenium
Carbenes by gem-Hydrogen Transfer to Internal Alkynes: Implications for Alkyne trans-Hydrogenation, in: Angewandte
Chemie, Int. Ed. 2015, 54, 12431-12436; doi: 10.1002/anie.201506075
|