Graz (pr&d) - Wer macht was und wo, wenn die Fettspeicher im Körper aktiviert werden? Die Biochemikerin
Ruth Birner-Grünberger untersucht mit Unterstützung des Wissenschaftsfonds FWF das komplexe Zusammenspiel
der Aktivierung und Regulation der Lipolyse und liefert damit die Basis für neue Therapieansätze bei
Krankheiten wie Diabetes oder Arteriosklerose.
Jeder Marathonläufer erreicht diesen Punkt: Nach dem schnellen Energielieferanten Glukose (aus Kohlenhydraten)
fängt der Körper mit der Fettverbrennung an, um Energie zur Verfügung zu stellen. Wer sich ausdauernd
und bei niedrigem Puls bewegt, setzt nach etwa 30 Minuten die Lipolyse in Gang. Das Gleiche passiert, wenn wir
Hunger haben: Die Fettzellen bekommen ein hormonelles Signal, das Depot verfügbar zu machen und eingelagerte
Fett-Tröpfchen in Fettsäuren aufzuspalten. Selbst wenn wir im moderaten Laufschritt unterwegs sind, laufen
diese Prozesse im Körper blitzschnell ab. "Die Aktivierungs- und Steuerungsprozesse springen innerhalb
von Sekunden an. Das geht nur, weil die Proteine für die Fettaufspaltung in der Zelle nicht erst gebaut, sondern
nur entsperrt werden müssen." In ihrem vom Wissenschaftsfonds FWF geförderten Projekt "Hormonale
Regulation der Lipolyse" hat die Biochemikerin Ruth Birner-Grünberger drei Fragen analysiert: welche
Proteine bei der Fettverbrennung beteiligt sind, wo sie räumlich an den Fett-Tröpfchen in den Fettzellen
interagieren und wie sie zu- oder ausgeschaltet werden.
Phosphat als Schalter
Birner-Grünberger beschäftigt sich seit ihrer Postdoc-Zeit 2002 mit der Lipolyse und entwickelt in ihrer
Arbeitsgruppe am Institut für Pathologie der Medizinischen Universität Graz Technologien für Proteomik:
"Dabei versuchen wir, für bestimmte Stoffwechselprozesse Proteine aufgrund ihrer Aktivität aufzuspüren",
so die Projektleiterin. Auf der Suche nach fettspaltenden Enzymen im Fettgewebe und in der Leber wurden in Vorstudien
mehrere Beteiligte gefunden: "Es gibt mehrere Lipasen, also fettspaltende Proteine, zudem weitere Proteine,
die den Prozess steuern." Besonders auffällig war die Fülle an Phosphorylierungen. Mit dieser chemischen
Modifikation, bei der Phosphat an Proteine gebunden wird, können in den Zellen Proteine aktiviert oder ausgeschalten
werden. Das ist zeit- und energiesparender, als jedes Mal die Proteinsynthese und den Proteinabbau anzuwerfen.
Im Forschungsprojekt galt es zu beantworten, wann und wo chemische Modifikationen die Proteine im Fettstoffwechsel
entriegeln oder lahmlegen.
Um dem Zusammenspiel der fettspaltenden Proteine auf die Schliche zu kommen, reichten in-vitro Studien allerdings
nicht aus: "Das biologische System ist komplex, stark reguliert und ortsgebunden. Wir bekommen kein vollständiges
Bild, wenn wir in einem Reagenzglas Fett-Tröpfchen, Lipase und Aktivator mischen", erklärt die Forscherin.
Erst die Beobachtung tierischer Zellen mittels konfokalem Laserscan-Mikroskop führte zum gemeinsamen Erfolg,
denn "Forschung bedeutet heute Kooperation", betont die Biochemikerin, die mit der Strukturbiologin Monika
Oberer (Universität Graz) und mit der Zellbiologin Dawn Brasaemle (Rutgers University, New Jersey, USA) zusammenarbeitete,
um die Proteine für die Versuchsreihen in entsprechender Menge und Qualität zu bekommen.
Räumlich und zeitlich getaktete Aktivierung
So konnten die ersten Schritte der räumlichen und chemischen Interaktion an den Fett-Tröpfchen in Gewebszellen
enthüllt werden: Um die erste (von drei) Lipasen zu aktivieren, braucht es in der Befehlskette den Aktivator
CGl58 und den Regulator Perilipin. Die beiden Proteine sitzen im basalen Zustand der Fettzellen aneinander gebunden
auf dem Lipid-Tropfen. Durch die Markierung mit Phosphat trennen sie sich, CGl58 wandert an eine andere Stelle
des Tropfens, um die erste Lipase (ATGL) zu aktivieren. Der Regulator Perilipin verhindert, dass die Lipasen aktiviert
werden, wenn es nicht nötig ist. Das ist interessant, weil verbreitete Krankheiten wie Diabetes und Arteriosklerose
durch die Überlastung des Fettstoffwechsels begünstigt werden. Wenn lange Zeit mehr Energie zugeführt
wird, als der Körper verbrennen kann, wird ein sorgfältig getaktetes und räumlich austariertes System
gestört.
In einem geplanten Folgeprojekt will die Leiterin der Forschungsgruppe "Functional Proteomics and Metabolic
Pathways" sich mittels Phosphoproteomik (das ist die globale Analyse von Tausenden Proteinphosphorylierungen
in Zellen) ansehen, welche energetischen Prozesse gleichzeitig mit der Lipolyse reguliert werden, wie zum Beispiel
Glykogenabbau, und deren zeitlichen Ablauf beobachten: "Es sieht so aus, als würden sich Fett-Zellen
binnen Minuten optimal darauf einstellen, dass Fettsäuren benötigt werden und wie sie weiter verarbeitet
werden. Wir brauchen sie ja nicht nur für die Bereitstellung von Energie, wie etwa bei Bewegung oder Hunger,
sondern auch für den Aufbau von Zellmembranen und Signalmolekülen." Um diese Analysen durchführen
zu können, wurde im Projekt auch eine Methode zur verbesserten Auswertung von Proteomik-Daten entwickelt.
Die Biochemikerin Ruth Birner-Grünberger ist seit 2014 Leiterin der Forschungsgruppe "Functional Proteomics
and Metabolic Pathways" an der Medizinischen Universität Graz und seit 2013 Koordinatorin des Omics Center
Graz. Sie promovierte in Technischer Chemie an der Technischen Universität Graz. Birner-Grünberger war
Projektleiterin in den BMWF/GEN-AU Verbundprojekten GOLD II & III und leitet derzeit ein Projekt im FWF-Doktoratskolleg
Metabolische und Kardiovaskulare Krankheiten (DK-MCD) zum Fettstoffwechsel. Sie war Gastprofessorin an der University
of California in Berkeley (USA) sowie an der ETH Zürich.
|