Winzigste Verunreinigungen haben keinen nennenswerten Einfluss auf das Verhalten eines chemischen
Stoffes – dachte man bisher. Ergebnisse von Experimenten eines internationalen Forscherteams unter Beteiligung
der TU Wien konnten jetzt das Gegenteil beweisen.
Hannover/Wien (tu) - Das chemische Verhalten von Stoffen ist in der Welt der Chemie grundsätzlich sehr
demokratisch geregelt: die Mehrheit eines Stoffs definiert, wie sich die Substanz verhält, auch wenn "fremde"
Spurenelemente enthalten sind. So kristallisiert Kochsalz und schmeckt wie Kochsalz, auch wenn es Spuren anderer
Stoffe enthält. Bisher galt es daher als ausgeschlossen, dass eine Spurenverunreinigung das komplette Kristallisationsverhalten
oder den chemischen Aufbau eines Stoffs substanziell verändern kann. Ein Forscherteam der Leibniz Universität
Hannover, der TU Wien und der Universität Wien konnte diese Annahme in Experimenten nun widerlegen.
Ein Atom schafft an, eine halbe Milliarde Atome gehorchen
"Unsere Arbeit hatte ihren Ursprung in einem Forschungspraktikum", erklärt Dr. Peter Weinberger
vom Institut für Angewandte Synthesechemie der TU Wien. „Ausgangspunkt war, dass wir uns das eigenartige Kristallisationsverhalten
einer Substanz nicht erklären konnten.“ Unzählige Experimente und mehrere Jahre später, konnte das
Rätsel um die betreffende Americium-dotierte Verbindung geklärt werden. „Durch unsere Arbeit konnten
wir zeigen, dass eine Ultraspurenverunreinigung des radioaktiven Elements Americium das chemische Verhalten der
„Seltenen Erde“ Terbium drastisch beeinflusst“, erklärt der Projektleiter Prof. Georg Steinhauser vom Institut
für Radioökologie und Strahlenschutz an der Leibniz Universität Hannover. Durch die Verunreinigung
mit Americium verhält sich das Terbium, bei dem es sich um einen Vertreter der schweren Seltenen Erden handelt,
wie eine leichte Seltene Erde. Der Einfluss eines einzelnen Americium-Atoms verändert die chemischen Eigenschaften
einer halben !
Milliarde Terbium-Atome also derart, dass sie sich verhalten, als hätte sich ihr Atomgewicht scheinbar verringert.
Bildlich gesprochen rutscht damit das Terbium im Periodensystem der Elemente deutlich weiter nach vorne. Interessant
ist dabei besonders, dass eine Substanzmenge, die eigentlich in der alltäglichen chemischen Betrachtungsweise
so gut wie gar nicht vorhanden ist, plötzlich durchaus dramatische Auswirkungen auf ein Experiment haben kann.
Die Tatsache, dass Americium radioaktiv ist und damit verhältnismäßig leicht messbar war, hat diesen
Nachweis überhaupt erst ermöglicht. „Mit normalen analytisch-chemischen Messmethoden hätten wir
eine Verunreinigung nur mit größerem Aufwand wahrnehmen können“, meint Peter Weinberger.
Potentiell weitreichende Konsequenzen
Und wie steht es mit den Auswirkungen, die diese Ergebnisse auf den Alltag haben? Eine wichtige Frage stellt
sich dabei an die Design-Kriterien, die man für Endlager von radioaktiven Abfällen anlegt. In der bisherigen
Konzeption von Endlagern wurde untersucht, wie sich unterschiedlichste Umweltbedingungen auf das Umweltverhalten
der radioaktiven Abfälle auswirken. In Anbetracht der vorliegenden Ergebnisse müsste in Zukunft ebenfalls
berücksichtigt werden, welchen ändernden Einfluss radioaktive Abfälle unter bestimmten Bedingungen
auf die sie umgebende Umwelt haben könnten. „Dies zu berücksichtigen, wird zweifelsfrei möglich
sein. Unsere Forschung hat es jedenfalls ermöglicht, ein künftiges Endlager noch ein gutes Stück
sicherer zu machen“, ist Georg Steinhauser überzeugt.
Am Projekt beteiligt waren das Institut für Radioökologie und Strahlenschutz an der Leibniz Universität
Hannover, an der TU Wien das Institut für Angewandte Synthesechemie, das Institut für chemische Technologien
und Analytik und das Atominstitut sowie das Institut für Mineralogie und Kristallographie an der Universität
Wien.
Originalpublikation:
Steinhauser, G., Weinberger, P., et al., Picomolar traces of AmIII introduce
drastic changes in the structural chemistry of TbIII: a break in the "gadolinium break". Angew. Chem.
Int. Ed.. DOI : 10.1002/anie.201703971
|