Maschinelles Lernen: Neue Methode
 ermöglicht genaue Extrapolation

 

erstellt am
13. 07. 18
13:00 MEZ

Wissenschaftler entwickeln neue maschinelle Lernmethode, die Roboter sicherer machen kann – ermöglicht einfachere und intuitivere Modelle von physikalischen Situationen
Stuttgart/Tübingen/Klosterneuburg (ist) - Um den sicheren Betrieb eines Roboters zu gewährleisten ist es entscheidend zu wissen, wie der Roboter unter verschiedenen Bedingungen reagiert. Aber woher soll man wissen, was einen Roboter zerstören würde, ohne ihn tatsächlich zu beschädigen? Eine neue Methode, die Wissenschaftler des Institute of Science and Technology Austria (IST Austria) und des Max-Planck-Instituts für Intelligente Systeme entwickelten, ist die erste Methode für maschinelles Lernen, welche Beobachtungen, die unter sicheren Bedingungen getroffen wurden, nutzt, um genaue Vorhersagen für alle möglichen Bedingungen zu treffen, die von der gleichen physikalischen Dynamik bestimmt werden. Die Methode ist speziell für reale Situationen entwickelt und bietet einfache, interpretierbare Beschreibungen der zugrundeliegenden Physik. Die Forscher stellen ihre Ergebnisse am 13. Juli auf der diesjährigen renommierten International Conference for Machine Learning (ICML) vor.

In der Vergangenheit konnte maschinelles Lernen Daten nur interpolieren – also Vorhersagen über eine Situation treffen, die „zwischen“ anderen, bekannten Situationen liegt. Maschinelles Lernen konnte nicht extrapolieren – das heißt es konnte keine Vorhersagen treffen über Situationen die außerhalb der bekannten Situationen liegen, da es nur lernt, bekannte Daten lokal so genau wie möglich zu modellieren. Das Sammeln von genügend Daten für effektive Interpolation ist außerdem zeit- und ressourcenintensiv, und erfordert Daten aus extremen oder gefährlichen Situationen. Georg Martius, ehemaliger Postdoc des IST Austria und ISTFELLOW und seit 2017 Gruppenleiter am MPI für Intelligente Systeme in Tübingen, Subham S. Sahoo, ein PhD Student am MPI für Intelligente Systeme, und Christoph Lampert, Professor am IST Austria, entwickelten nun eine neue maschinelle Lernmethode, die diese Probleme anspricht. Es ist die erste maschinelle Lernmethode, die präzise für unbekannte Situationen extrapoliert.

Das Besondere der neuen Methode ist, dass sie versucht, die wahre Dynamik der Situation herauszufinden: Basierend auf den Daten liefert sie Gleichungen, die die zugrundeliegende Physik beschreiben. „Wenn man diese Gleichungen kennt“, sagt Georg Martius, „dann kann man sagen, was in allen Situationen passieren wird, auch, wenn man sie nicht gesehen hat.“ Das ist, was es der Methode ermöglicht, zuverlässig zu extrapolieren, und sie so einzigartig unter maschinellen Lernmethoden macht.

Die Methode des Teams ist in mehrfacher Hinsicht einzigartig. Erstens waren die Lösungen, die maschinelles Lernen zuvor erstellte, viel zu komplex, als dass ein Mensch sie verstehen könnte. Die Gleichungen, die aus der neuen Methode resultieren, sind viel einfacher: „Die Gleichungen unserer Methode sind etwas, was man in einem Lehrbuch sehen würde – einfach und intuitiv“, sagt Christoph Lampert. Letzteres ist ein weiterer Vorteil: Andere maschinelle Lernmethoden geben keinen Einblick in den Zusammenhang zwischen Eingaben und Ergebnissen – und damit auch keine Einsicht darüber, ob das Modell überhaupt plausibel ist. „In allen anderen Forschungsbereichen erwarten wir Modelle, die physikalisch Sinn machen, und die uns sagen, warum“, ergänzt Lampert. „Das sollten wir auch vom maschinellen Lernen erwarten und das ist, was unsere Methode bietet.“ Deshalb basierte das Team seine Lernmethode auf einer einfacheren Architektur als übliche Methoden, um die Interpretierbarkeit zu gewährleisten und sie für physikalische Situationen zu optimieren. In der Praxis bedeutet das, dass weniger Daten benötigt werden, um die gleichen oder sogar bessere Ergebnisse zu erzielen.

Und es ist nicht alles Theorie: „In meiner Gruppe arbeiten wir an der Entwicklung eines Roboters, der diese Art des Lernens nutzt. In Zukunft würde der Roboter mit verschiedenen Bewegungen experimentieren und dann in der Lage sein, die Gleichungen herauszufinden, die seinen Körper und seine Bewegung beschreiben, so dass er gefährliche Aktionen oder Situationen vermeiden kann“, fügt Martius hinzu. Während hauptsächlich an der Roboteranwendung geforscht wird, kann die Methode mit jeder Art von Daten, von biologischen Systemen bis hin zu Röntgenübergangsenergien, eingesetzt werden und auch in größere maschinelle Lernnetzwerke integriert werden.

Link zur Konferenz: https://icml.cc/


Über das IST Austria
Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Computerwissenschaften. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschaftler und vormals Professor an der University of California in Berkeley, USA, und der EPFL in Lausanne, Schweiz.

Über das MPI-IS
Das Max-Planck-Institut für Intelligente Systeme hat sich zum Ziel gesetzt, die Prinzipien von Wahrnehmen, Handeln und Lernen in autonomen Systemen zu verstehen. Aus diesem Verständnis heraus wollen die Wissenschaftler künstliche intelligente Systeme entwickeln. An seinen zwei Standorten in Stuttgart und Tübingen verbindet das Institut Spitzenforschung in Theorie, Software und Hardware.
Der Standort in Stuttgart beherbergt führende Expertise in den Bereichen Mikro- und Nano-Robotik, Haptik, Mensch-Maschine-Interaktion, bio-hybride Systeme sowie Medizinrobotik. Am Standort Tübingen wird mittels Forschung in den Bereichen Maschinelles Lernen, Maschinelles Sehen und Robotik untersucht, wie intelligente Systeme Informationen verarbeiten, um wahrnehmen, handeln und lernen zu können.

Originalpublikation: S. S. Sahoo, C. H. Lampert, and G. Martius. Learning equations for extrapolation and control. In Proc. 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, 2018. PMLR, 2018. to appear
Arxiv Preprint: https://arxiv.org/abs/1806.07259

 

 

 

zurück

 

 

 

 

Die Nachrichten-Rubrik "Österreich, Europa und die Welt"
widmet Ihnen der
Auslandsösterreicher-Weltbund

 

 

 

Kennen Sie schon unser kostenloses Monatsmagazin "Österreich Journal" in vier pdf-Formaten? Die Auswahl finden Sie unter http://www.oesterreichjournal.at