Innsbruck (universität) - Eine internationale Forschungsgruppe hat in Innsbruck die weltweit erste quantenchemische
Simulation auf einem Ionenfallen-Quantencomputer durchgeführt. Die Quantensimulation von chemischen Prozessen
könnte in Zukunft viele Probleme in der Chemie lösen helfen und so zum Beispiel neue Impulse für
die Materialwissenschaft, Medizin und Industriechemie geben.
In dem Experiment am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie
der Wissenschaften untersuchten die Wissenschaftler um Cornelius Hempel und Thomas Monz einen vielversprechenden
Weg zur Modellierung chemischer Bindungen und Reaktionen mit Hilfe von Quantencomputern. „Selbst die größten
Supercomputer haben Mühe, alles andere als die einfachste Chemie zu modellieren. Quantencomputer, die die
Natur simulieren, erschließen hier eine völlig neue Möglichkeit, Materie zu verstehen. Sie geben
uns ein neues Werkzeug an die Hand, um Probleme in der Materialwissenschaft, Medizin und Industriechemie mit Hilfe
von Simulationen zu lösen“, sagt Cornelius Hempel, der 2016 vom IQOQI an die University of Sydney ging. Da
Quantencomputer noch in den Kinderschuhen stecken, bleibt unklar, welche Probleme diese Geräte am effektivsten
lösen werden können, aber viele sind sich einig, dass die Quantenchemie eine der ersten „Killer-Apps“
dieser neuen Technologie sein wird.
Breite Anwendung für Quantenchemie
Die Quantenchemie versucht die komplizierten Bindungen und Reaktionen von Molekülen mit Hilfe der Quantenmechanik
zu verstehen. Viele Details von chemischen Prozessen können selbst mit den größten und schnellsten
Supercomputern nicht simuliert werden. Durch die Modellierung dieser Prozesse mit Hilfe von Quantencomputern erwarten
die Wissenschaftler ein besseres Verständnis. Damit könnten Wege für chemische Reaktionen erschlossen
werden, die weniger Energie benötigen, und die Entwicklung neuer Katalysatoren ermöglichen. Dies hätte
enorme Auswirkungen auf die Industrie, wie zum Beispiel in der Produktion von Düngemitteln. Weitere mögliche
Anwendungen sind die Entwicklung organischer Solarzellen und besserer Batterien durch verbesserte Materialien sowie
die Nutzung neuer Erkenntnisse bei der Entwicklung personalisierter Medikamente.
Einfache chemische Bindung simuliert
Am Institut für Quantenoptik und Quanteninformation in Innsbruck verwendeten die Wissenschaftler einen
Ionenfallen-Quantencomputer mit 20 Quantenbits und simulierten auf bis zu vier Quantenbits die Energiezustände
der Bindungen von molekularem Wasserstoff und Lithiumhydrid. „Wir haben diese relativ einfachen Moleküle gewählt,
weil sie bereits sehr gut verstanden werden und mit klassischen Computern simuliert werden können“, sagt Thomas
Monz vom Institut für Experimentalphysik der Universität Innsbruck. „So können wir die Ergebnisse
der Quantencomputer direkt überprüfen und gewinnen wichtige Erfahrungen für deren Weiterentwicklung.“
Cornelius Hempel ergänzt: „Dies ist ein wichtiger Schritt in der Entwicklung dieser Technologie, bei dem wir
Vergleichsmaßstäbe setzen, nach Fehlern suchen und notwendige Verbesserungen planen können.“ Anstatt
die bisher genaueste oder größte Simulation anzustreben, konzentrierte sich das Team auf das, was in
einem vielversprechenden quantenklassischen Hybrid-Algorithmus, dem sogenannten Variational Quantum Eigensolver
oder VQE, schief gehen kann. Indem sie verschiedene Wege untersuchten, wie die chemische Fragestellung im Quantencomputer
kodiert werden kann, analysierten die Forscher die Möglichkeiten, wie Fehler, die in den heute noch unvollkommenen
Geräten unweigerlich auftreten und deren Nutzung in naher Zukunft noch im Wege stehen, unterdrückt werden
können. „Neben den supraleitenden Quantenbits ist die Ionenfallen-Technologie die führende Plattform
für die Entwicklung eines Quantencomputers“, sagt der Innsbrucker Quantencomputer-Pionier Rainer Blatt. „Die
Quantenchemie ist ein Beispiel, wo sich die Vorteile eines Quantencomputers schon sehr bald in konkreten Anwendungen
zeigen wird.“
Die Ergebnisse der Forschungsgruppen um Rainer Blatt und den amerikanischen Chemiker Alán Aspuru-Guzik wurden
nun in der Fachzeitschrift Physical Review X veröffentlicht und entstanden unter anderem mit der finanziellen
Unterstützung des österreichischen Wissenschaftsfonds FWF und der Europäischen Kommission.
Publikation: Quantum chemistry
calculations on a trapped-ion quantum simulator. Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean,
Thomas Monz, Heng Shen, Petar Jurcevic, Ben Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer
Blatt, Christian Roos. Physical Review X 2018 DOI: 10.1103/PhysRevX.8.031022 (arXiv: https://arxiv.org/abs/1803.10238)
|